Separating doubly nonnegative and completely positive matrices
نویسندگان
چکیده
منابع مشابه
Separating doubly nonnegative and completely positive matrices
The cone of Completely Positive (CP) matrices can be used to exactly formulate a variety of NP-Hard optimization problems. A tractable relaxation for CP matrices is provided by the cone of Doubly Nonnegative (DNN) matrices; that is, matrices that are both positive semidefinite and componentwise nonnegative. A natural problem in the optimization setting is then to separate a given DNN but non-CP...
متن کاملThe Difference Between 5× 5 Doubly Nonnegative and Completely Positive Matrices
The convex cone of n × n completely positive (CPP) matrices and its dual cone of copositive matrices arise in several areas of applied mathematics, including optimization. Every CPP matrix is doubly nonnegative (DNN), i.e., positive semidefinite and component-wise nonnegative, and it is known that, for n ≤ 4 only, every DNN matrix is CPP. In this paper, we investigate the difference between 5×5...
متن کاملTridiagonalization of Completely Nonnegative Matrices
Let M = [ttUiSi /_i be completely nonnegative (CNN), i.e., every minor of Mis nonnegative. Two methods for reducing the eigenvalue problem for M to that of a CNN, tridiagonal matrix, T = [?,-,] (r,-,= 0 when |i — j\ > 1), are presented in this paper. In the particular case that M is nonsingular it is shown for one of the methods that there exists a CNN nonsingular 5 such that SM = TS.
متن کاملCompletely positive mappings and mean matrices
Some functions f : R+ → R+ induce mean of positive numbers and the matrix monotonicity gives a possibility for means of positive definite matrices. Moreover, such a function f can define a linear mapping (JfD) −1 : Mn → Mn on matrices (which is basic in the constructions of monotone metrics). The present subject is to check the complete positivity of (JfD) −1 in the case of a few concrete funct...
متن کاملImmanants of Totally Positive Matrices Are Nonnegative
If/ is an irreducible character of Sn, these functions are known as immanants; if/ is an irreducible character of some subgroup G of Sn (extended trivially to all of Sn by defining /(vv) = 0 for w$G), these are known as generalized matrix functions. Note that the determinant and permanent are obtained by choosing / to be the sign character and trivial character of Sn, respectively. We should po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Programming
سال: 2011
ISSN: 0025-5610,1436-4646
DOI: 10.1007/s10107-011-0485-8